Development of Hierarchical Multiscale Method and Its Applications to the Characterization of Microstructure Effect

نویسنده

  • I-Ling Chang
چکیده

The mechanical properties of materials are inherently multiscale, depending on phenomena at all length scales. Hence, multiscale modeling is a huge scientific challenge as well as a critical necessity for successful manipulation of material properties. This proposed research aims to investigate the microstructure (i.e., grain and inclusion) effect on the material properties especially for the system which involve two characteristic microstructure features at distinct length scales using hierarchical multiscale method. The fundamental understanding of multiscale behavior is the key to the utilization of nano-materials and to the design of material systems contained nano-materials. In polycrystalline nanofilm, two distinct characteristic sizes, i.e. grain size of micrometers and film thickness of nanometers, are involved. The typical size of inclusion would vary significantly due to manufacturing process. The hierarchical multiscale simulation method, which integrates atomistic and continuum methods sequentially, offer the possibility to characterize the size dependence of both elastic and plastic properties. The proposed innovative algorithm adopts the representative volume element concept to link atomistic and continuum models through the parameters of the finite element method, which permits a reduction of the full set of atomistic degrees of freedom. This research gives a description of the proposed innovative method with special reference to the ways in which the method may be used to model crystals with more than a single grain or inclusion. In the project, we utilized the proposed innovative multiscale method to study the microstructure effect on the material properties. A multiscale method is developed to bridge the gap between nano-scale and macro-scale and study the multiscale behavior of materials. Ultimately, we developed a systematic approach to gain physical insight of the multiscale behavior of nano-materials for the design and fabrication of nano-devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

Applications of Impedance Plane and Magnetic Differential Permeability in Microstructural Characterization of AISI D2 Tool Steel

Two nondestructive electromagnetic/magnetic techniques including hysteresis loop and eddy current methodologies have been used to characterize microstructural changes of AISI D2 cold work tool steel as a result of quench and tempering treatments. To measure the fraction retained austenite in quenched microstructure, six specimens were austenitized in the range  of 1000-1130 °C. Samples austenit...

متن کامل

Rock physics characterization of shale reservoirs: a case study

Unconventional resources are typically very complex to model, and the production from this type of reservoirs is influenced by such complexity in their microstructure. This microstructure complexity is normally reflected in their geophysical response, and makes them more difficult to interpret. Rock physics play an important role to resolve such complexity by integrating different subsurface di...

متن کامل

Application of M3GM in a Petroleum Reservoir Simulation

Reservoir formations exhibit a wide range of heterogeneity from micro to macro scales. A simulation that involves all of these data is highly time consuming or almost impossible; hence, a new method is needed to meet the computational cost. Moreover, the deformations of the reservoir are important not only to protect the uppermost equipment but also to simulate fluid pattern and petroleum produ...

متن کامل

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011